Giant cuticular pores in Eidothea zoexylocarya (Proteaceae) leaves.

نویسندگان

  • Raymond J Carpenter
  • Gregory J Jordan
  • Andrea Leigh
  • Timothy J Brodribb
چکیده

Ubiquitous, large diameter pores have not previously been adequately demonstrated to occur in leaf cuticles. Here we show conclusively that such structures occur in Eidothea zoexylocarya, a rainforest tree species of Proteaceae restricted to the Australian Wet Tropics. The pores are abundant, large-diameter apertures (∼1 μm), that extend perpendicularly most of the way through the cuticle from the inside. They occur on both sides of the leaf, but are absent from the cuticle associated with stomatal complexes on the abaxial side. No such pores were found in any other species, including the only other species of Eidothea, E. hardeniana from New South Wales, and other species that have previously been purported to possess cuticular pores. To determine whether these pores made the cuticles more leaky to water vapor, we measured astomatous cuticular conductances to water vapor for E. zoexylocarya and seven other Proteaceae species of the Wet Tropics. Cuticular conductance for E. zoexylocarya was relatively low, indicating that the prominent pores do not increase conductance. The function of the pores is currently obscure, but the presence of both pores and an adaxial hypodermis in E. zoexylocarya but not E. hardeniana suggests evolution in response to greater environmental stresses in the tropics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species

Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The...

متن کامل

Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency.

Proteaceae species in south-western Australia occur on severely phosphorus (P)-impoverished soils. They have very low leaf P concentrations, but relatively fast rates of photosynthesis, thus exhibiting extremely high photosynthetic phosphorus-use-efficiency (PPUE). Although the mechanisms underpinning their high PPUE remain unknown, one possibility is that these species may be able to replace p...

متن کامل

New taxa and new records of Australian Panchaetothripinae (Thysanoptera, Thripidae)

A new genus and species of panchaetothripine thripid, Stosicthrips szitas, apparently related to Parthenothrips dracaenae, is described from leaves of a cultivated Grevillea (Proteaceae) in central Queensland and also at Perth, Australia. In another genus, Bhattithrips, a new species B. borealis is described from northern Australia, and the four members of this Australian genus are distinguishe...

متن کامل

Distribution of Calcium and Phosphorus in Leaves of the Proteaceae

The overall aim of our research program is to discover the physiological basis of calcium toxicity in Proteaceae plant species that typically inhabit low-phosphorus, acidic soils and avoid calcareous (alkaline) soils. The phenomenon of Ca toxicity has been known for decades, but so far no clear mechanistic explanation is available. We propose that Ca toxicity in P-efficient Proteaceae is the re...

متن کامل

CO2 and Water Vapor Exchange across Leaf Cuticle (Epidermis) at Various Water Potentials.

Cuticular properties affect the gas exchange of leaves, but little is known about how much CO2 and water vapor cross the cuticular barrier or whether low water potentials affect the process. Therefore, we measured the cuticular conductances for CO2 and water vapor in grape (Vitis vinifera L.) leaves having various water potentials. The lower leaf surface was sealed to force all gas exchange thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of botany

دوره 94 8  شماره 

صفحات  -

تاریخ انتشار 2007